In both elective and revision surgery, removal of retained hardware can be unpredictable. Broken hardware, whether identified before or during surgery, presents a significant challenge. Cases often require enlisting a large variety of equipment and techniques that often result in larger dissection and potential for wider soft-tissue or bony destruction. Broken intramedullary devices, located entirely within the cortices of bone, pose unique challenges. Various techniques have been used to remove broken cannulated nails. There is, however, a paucity of techniques for removing broken solid nails from within the tibia. Moreover, many of these techniques require significant metaphyseal and cortical bone destruction that may compromise the integrity of the long bone. In this article, we describe a modified technique for removal of a broken solid nail, with minimal cortical bone destruction, in the setting of a tibial nonunion.

Technique

A 23-year-old man presented with a symptomatic valgus nonunion of the tibia, which had been treated with a solid intramedullary 9-mm nail (Orthofix). The patient was taken to the operative theater for nonunion takedown and exchanged reamed intramedullary nailing. The proximal fragment of the anterograde intramedullary nail was removed in standard fashion using the Winquist Universal Extraction Set (Shukla Medical). When threading the extractor into the proximal aspect of the nail, we found it helpful to leave one of the cross-locks in place to prevent nail rotation. Inspection of the removed nail revealed a fracture of the device at the more proximal of 2 distal cross-locks (Figures 1A, 1B, 2).
The nonunion was then approached and taken down in standard fashion. Malalignment was corrected, and a guide wire was passed to the level of the broken distal fragment of the nail.

Reamers were then passed through the intramedullary canal to the level of the broken implant, with the final reamer measuring 12.5 mm. We therefore reamed 3.5 mm larger than the diameter of the original nail to ultimately place the nail 2 mm larger in diameter than the broken one. A cross-lock was again left in place, this time to prevent further impaction of the distal fragment into the canal.

To remove the distal fragment of the nail, we used a 5.0-mm smooth Steinmann pin. After cross-lock removal, the pin was placed unicortically through the distal medial cortex at the tip of the retained implant. The distal nail fragment was pushed proximally using the pin as a lever with the interposed cortical bone serving as a fulcrum (Figures 3A, 3B).
Additional fulcrum points were then selected proximally using the existing cortical defects from the previously placed cross-locking screws, minimizing destruction of cortical bone. The retained nail was then pushed proximally toward the nonunion site with windows spaced at intervals of about 1 cm. Thus, with the window we created distally, and the 2 cortical windows previously occupied by cross-locking screws, we were able to move the nail fragment about 3 cm proximally, where it could be reached and removed with Kocher forceps. Figure 2 shows the removed fragment.

Discussion

Removal of broken solid intramedullary tibial nails presents orthopedic surgeons with a unique challenge. We have described a technique that modifies and incorporates previously described techniques while exploiting available surgical windows to facilitate hardware removal. This technique obviates the need for further bony and soft-tissue dissection, potentially mitigating surgical morbidity.

Other techniques for removing broken solid intramedullary devices have been reported. Krettek and colleagues\(^7\) described a technique in which the short distal fragment of a broken solid femoral intramedullary nail was removed with use of retrograde levering through a cortical window just proximal to the articular surface. The same window was then used for anterograde nail removal with a small Hohmann retractor serving as a guide. This technique is limited by the need for a large bony window, which potentially creates a stress riser within the distal segment. In addition, a short, distal nail fragment is required in order to facilitate manipulation through the metaphyseal bone. This technique is more readily used within the distal femur, given the large metaphyseal volume, in contrast with the distal tibial metaphysis. Giannoudis and colleagues\(^1\) described a method (for both tibia and femur) in which the intramedullary canal was proximally reamed to permit retrograde removal of an anterograde nail. The authors described reaming the canal to 4 mm larger than the nail to create access for a cleaning trephine and then a ratcheting extractor. This technique can be easily applied to the tibia or femur but requires special equipment that may not be readily available. Other retrograde techniques for the femur\(^8\) are not as suitable for the tibia, as they would cause significant chondral damage to the tibiotalar joint.

In developing our technique, which includes modifications of other methods, we used cortical windows, levering, and anterograde reaming to permit removal of a broken solid fragment through a nonunion site and with minimal additional destruction of bone. Although an existing cortical window was used, the newly created cortical window was significantly smaller than windows used in other techniques, and it avoids the articular surface. This technique can be performed with common, readily accessible equipment, which may be helpful in situations in
which broken nails are encountered unexpectedly. In summary, this simple, safe, and effective technique uses standard equipment to preserve bone, decrease operative time, and alleviate surgeon frustration in complicated hardware removal surgeries.

Am J Orthop. 2016;45(6):E352-E354. Copyright Frontline Medical Communications Inc. 2016. All rights reserved.

Key Info

Figures/Tables

References

References

Multimedia

Product Guide

Product Guide

- Med4 Elite®
- GRPro 2.1®
- Shoulder Wrap
- Knee Wrap

Citation

W. Michael Pullen MD; Nicholas J. Erdle MD; Colin Crickard MD; Christopher S. Smith MD. A Modified Levering Technique for Removing a Broken Solid Intramedullary Tibial Nail: A Technical Tip. *Am J Orthop*. 2016 September;45(6):E352-E354

W. Michael Pullen