Surgical Anatomy of Latissimus Dorsi Muscle in Transfers About the Shoulder

Benjamin A. Goldberg, MD, Bassem Elhassan, MD, Steven Marciniak, MD, and Jonathan H. Dunn, MD

Abstract
Transfer of the latissimus dorsi to the greater tuberosity has been used successfully in the treatment of massive rotator-cuff deficiency. For safe release and transfer of the tendon, the variations in the tendinous insertions of the latissimus dorsi and teres major onto the humerus need to be understood.

In anatomical dissection of 12 cadavers, mean width of the latissimus tendon was 3.3 cm at its insertion, and mean length was 7.3 cm. In all specimens, there were fascial connections between the latissimus and teres major and between the latissimus and the long head of the triceps.

There were 3 insertion patterns of the latissimus dorsi tendon onto the humerus with respect to the tendon of the teres major: completely separate (8 cadavers), loosely bound (3 cadavers), and completely joined (1 cadaver). If the latissimus dorsi were being transferred in the last type, the teres major would need to be transferred with the latissimus dorsi as a common musculotendinous unit.

Tears of the rotator cuff are common.1-4 Patients with rotator-cuff tears can present with a wide range of clinical symptoms, from minor discomfort to debilitating pain and loss of function.1-3,5-11 Although most torn rotator cuffs can be repaired anatomically with conventional methods, some massive rotator-cuff tears and chronic rotator-cuff tears with extensive fatty degeneration are not successfully repaired either because technically they are irreparable given their large size or because there is a high recurrence rate after repair, dictated by the amount of fatty degeneration.12-15

Latissimus dorsi tendon transfer has been proposed as a treatment for irreparable tears of the rotator cuff.12-14 Transfer requires the latissimus dorsi be released at its insertion and sufficiently mobilized to minimize tension on the transferred tendon.13,14,16-19 Variations in the surgical anatomy of the latissimus dorsi have not been well described in the literature but must be understood to perform transfers about the shoulder both safely and effectively. Although the anatomy of the distance relationship of the axillary and radial nerves to the latissimus dorsi with the arm in various positions has been described,20 few investigators have reported differences in the relationship between the tendinous insertions of the latissimus dorsi and teres major as they insert onto the humerus.

In the present study, we sought to better define the surgical anatomy of the latissimus dorsi at its insertion for use in transfers about the shoulder.

Materials and Methods
Anatomical dissection was meticulously performed on 10 fresh cadavers and 2 embalmed cadavers. All the dissections were performed by Dr. Marciniak. There was no evidence of rotator-cuff or other pathology of the shoulder girdle of these cadavers. Dissection was performed with cadavers in the lateral decubitus position.

Fascial connections between the latissimus dorsi and other muscles of the shoulder girdle were noted. Length and width of the latissimus dorsi and the teres major tendons were measured. The insertional anatomy between the teres major and latissimus dorsi tendons was studied. The locations of the axillary and radial nerves were noted with respect to the teres major and latissimus dorsi tendons.

Results
For the latissimus tendon, mean width was 3.3 cm at its insertion, and mean length was 7.3 cm (Table). There were fascial connections between the muscle bellies of the latis-
simus dorsi and teres major in all specimens (Figure 1). The
tendons of the teres major and latissimus dorsi muscles near
their insertions were found to have 3 distinct patterns. The
first insertional pattern (Figure 2) had separate and distinct
tendons of the latissimus dorsi and the teres major. These
tendons, present in 8 (67%) of the specimens, were easily
separated by gentle finger dissection. The second insertional
pattern (Figure 3) consisted of a common tendinous insertion
of the latissimus dorsi and teres major. These tendons, present
in 3 cadavers (25%), were separated only with sharp division
of fibrous connections. In the third insertional pattern (Figure
4), present in 1 cadaver (8%), tendons were completely con-
joined and could not be separated.

All specimens had, between the latissimus dorsi and the
long head of the triceps, a band of tissue representing the
remnant of the dorsoepitrochlearis brachii of apes (Figure
5), and all specimens lacked an axillary arch of Langer. The
insertion of the teres major was farther distal and posterior
on the humerus in all specimens.

The location of the axillary and radial nerves near the
insertion of the tendons was consistent in all 12 specimens.
The axillary nerve was slightly posterior and proximal to
the insertion of latissimus and was covered by a fibrous
sheath. The radial nerve was anterior and distal to the inser-
tion of the latissimus dorsi tendon and covered by fat.

Table. Width, Length, and Insertional Pattern on Humerus of Latissimus
Dorsi Tendon With Respect to Teres Major Tendon

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Width (cm)</th>
<th>Length (cm)</th>
<th>Insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
<td>7.8</td>
<td>Separate</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>7.3</td>
<td>Separate</td>
</tr>
<tr>
<td>3</td>
<td>4.2</td>
<td>6.6</td>
<td>Joined</td>
</tr>
<tr>
<td>4</td>
<td>3.4</td>
<td>7.5</td>
<td>Separate</td>
</tr>
<tr>
<td>5</td>
<td>3.3</td>
<td>7.4</td>
<td>Separate</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
<td>7.1</td>
<td>Separate</td>
</tr>
<tr>
<td>7</td>
<td>3.3</td>
<td>7.3</td>
<td>Separate</td>
</tr>
<tr>
<td>8</td>
<td>3.5</td>
<td>6.9</td>
<td>Bound</td>
</tr>
<tr>
<td>9</td>
<td>3.8</td>
<td>7.6</td>
<td>Separate</td>
</tr>
<tr>
<td>10</td>
<td>3.5</td>
<td>7.7</td>
<td>Separate</td>
</tr>
<tr>
<td>11 (embalmed)</td>
<td>3.1</td>
<td>7.4</td>
<td>Bound</td>
</tr>
<tr>
<td>12 (embalmed)</td>
<td>2.6</td>
<td>6.7</td>
<td>Separate</td>
</tr>
</tbody>
</table>

Figure 2. Separate and distinct tendons of latissimus dorsi (LAT) and teres major (T MAJ) as they insert on humerus—the most common insertional pattern in this study.

Figure 3. Tendons of latissimus dorsi (LAT) and teres major (TM) have common tendinous insertion on humerus and can be separated with sharp dissection.

Discussion

There is no consensus on how to define a massive tear. According to Cofield,21 the diameter of a massive tear is at least 5 cm. For the rate of recurrence after repair, Goutallier and colleagues15 demonstrated that only in cuffs with minimal fatty degeneration and a low index of global fatty degeneration is there a good chance of satisfactory anatomical repair 3 years after surgery. They found a significant association between recurrent tearing of each rotator-cuff tendon and presurgical fatty degeneration of the muscle.

Massive irreparable rotator-cuff tears can lead to signifi-
cant functional impairment, weakness, and pain caused by
cranial migration of the humeral head, which eventually
results in cuff tear arthropathy and progressive loss of the
deltoid lever arm.14

An irreparable tear can be managed with either open or
arthroscopic débridement, which helps provide pain relief
but does not restore strength.4,22,23 In patients with pain
and weakness, distant tendon transfers have been proposed
to manage irreparable rotator-cuff tears. For a tendon to
be ideal for transfer around the shoulder, it should be of
enough length, strength, and excursion, and its transfer
should be associated with the least deficit. Results from
studies have shown that the latissimus dorsi muscle makes
an ideal pedicled flap because of its long neurovascular
pedicle and large size, which minimize the possibility of injury to the neurovascular pedicle from traction and dissection. Moreover, Herzberg and colleagues found much larger excursion of the latissimus dorsi musculotendinous unit (33.9 cm) compared with the supraspinatus (6.7 cm), which facilitates its mobilization and use for muscle transfer around the shoulder. Both the latissimus dorsi and teres major have been described as having the largest depressor (adductor) moment arms on the shoulder.

In a biomechanical study using outcome variables such as moment arms, muscle length, and muscle force, Magermans and colleagues concluded that a tendon transfer of the teres major to the supraspinatus insertion produces excellent functional outcome in the treatment of massive rotator-cuff tears. Thus, transfer of the conjoined and inseparable pattern of latissimus/teres major tendon could still be performed successfully, despite the lower excursion of these combined tendons compared with the latissimus tendon alone.

For improved excursion during surgery, the fascial connections between the muscle bellies of the teres major and latissimus dorsi should be released. There is also a fascial band between the long head of the triceps and the latissimus dorsi near the musculotendinous junction that needs to be released. This band represents the dorsoepitrochlearis brachii of apes and may remain as a muscular remnant in some specimens. Although not encountered in the 12 specimens dissected for the present study, there may be a muscular slip, called the axillary arch of Langer, that runs transversely from the anterior superior border of the latissimus to the tendon of the pectoralis major, coracobrachialis, or the bicipital fascia. This muscular slip runs anterior to the axillary vessels and should be divided to prevent the possibility of compression of these vital structures after the muscle is transferred. The axillary arch, well described in the breast oncology literature, appears to be less prevalent; incidence is 0.25% to 0.8%, versus the 7% incidence previously described.

Care must be taken to avoid damage to the axillary and radial nerves during tendon release, given the proximity of these structures to the latissimus tendon. Cleeman and colleagues performed a cadaveric study to determine the distance relationship of the latissimus dorsi tendon to the axillary and radial nerves with the shoulder in different positions. They found that the mean distance from the latissimus dorsi insertion to the axillary and radial nerves with the shoulder flexed and the arm internally rotated was 2.3 cm and 2.8 cm, respectively; these distances changed to 1.8 cm and 2.0 cm, respectively, with the shoulder abducted and the arm internally rotated. These findings indicate that the safer surgical approach is with the shoulder flexed and the arm internally rotated.

Transfer of the latissimus dorsi to the greater tuberosity has been found to have promising functional results in the treatment of massive, irreparable rotator-cuff deficiency, but its use after failure of prior rotator-cuff surgery makes outcomes less predictable.

Gerber and colleagues reported outcomes with latissimus tendon transfer for irreparable rotator-cuff tear. After follow-up of about 5 years, 94% of patients had significant relief of pain at rest, and 75% had relief of pain with exertion. Mean active flexion of the shoulder was 123°. Morelli and Miniaci and MacLeod reported similar results in 17 patients with a 2- to 5-year follow-up. Fourteen patients had significant relief of their pain and improved function; the 3 patients who did poorly had work-related injuries. Aoki and colleagues reported on 12 patients with a mean follow-up of 3 years. Eight patients had good or excellent results, with mean active flexion of 135°.
In conclusion, the latissimus dorsi tendon transfer for irreparable rotator-cuff tears can be performed safely and successfully. However, thorough understanding of the complex anatomical variations is essential for providing tension-free transfer while minimizing complications.

Authors’ Disclosure Statement

The authors report no actual or potential conflict of interest in relation to this article.

References